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its centre of mass is equal to the total random kinetic energy of all

its molecules 7 (Molecular weight of hydrogen = 2)
[Ans, 1-93%10° cm/s]
61. Calculate the temperature at which the r.m.s. velocity of
a helium molecule will be equal to the speed of the earth’s first
satellite 1.e., v = 8 km/s. [Ans. 10-28x10° K]
62. Calculate the mean kinetic energy of a molecule of a gas
at 1,000°C. Given,
R = 831 x 10* ergs/gram mol-K
N = 6-02x10%
(Delhi 1969) {Ans, 2:07Xx 107! ergs]
63. If the density of nitrogen is 1:25 g/litre at N.T.P., calcu-
late the R.M.S. velocity of its molecules.
[Delhi 1972 ; Delhi (Hons.) 1973] [Ans. 4-95x10¢ cm/s]
64. At what temperature is the R.M.S. speed of oxygen mole-
cules twice their R.M.S. speed at 27°C 7 ’
» (Delhs 1973) [Ans. 927°C]
65. Calculate the R.M.S. velocity of the molecules of hydro-
gen at 0°C. Molecular weight of hydrogen = 2-016 and
R = 831 x 107 ergs/gram mole °C

(Delhi 1971) [Ans. 184108 cm/s]

66. Calculate the R.M.S. velocity of the hydrogen molecules
at room temperature, given that one litre of the gas at room tempe-

rature and normal pressure weighs 0-086 g. -
(Delhi 1976) [Ans. 1-88x 10° cm/s)]

67. Write short notes on :
(f) Mean free path
(17) Joule-Thomson Effect
(t1) Coatinuity of state
(iv) Rowland’s experiment for finding J
(v} Van der Wa=ls cquatiém of state
(vi) Pressure exerted by an ideal gas
(vi7) Critical constants
(viii) Degrees of freedom
(3x) Avomicity of gases
(z) Maxwell’s law of distribution of velocity. (Delhi 1975)
(xi) Andrews’ experiments
(zii) Amagat’s experiments
(ziii) Halbern's experiments
(ziv)" Behaviour of gases at high pressure
(xzv) Critical point
(zvi) Corresponding states
(zvii) Intermolecular attraction
(zviii) Temperature of inversion
" (wiz) Reduced equation of state for a gas [Delhi (Hons.) 1976}
(zz) Porous plug experiment.

[Agra 1962 ; Delhi (Sub)) 1966}
(Agra 1962 ; Delki 1974, 75)
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61 Thermodynamic System

A thermodynamic sysiem is one which can be described in
terms of the thermodynamic "co-ordinates. The ¢o-ordinates of a
thermodynamic system can be specified by any pair of quantities viz.
pressure (P), volume (V), temperature (T) and entropy (S). Thé
thermodynamic systems in engineering are gas, vapour, steam, mix-
ture of gasoline vapour and air, ammonia vapo-rs and its liqui’d. In
Physics, thermodynamics includes besides the above, systems like
stretched wires, thermocouples, magnetic materials, electrical con- .

_denser, electrical cells, solids and surface films.

Exat’nples : 1. Stretched wire. In a stretched wire, to find
the Young’s modulus of a wire by stretching, the complete thermo-

dynamic co-ordinates are
(a) the stretching force F
(b) the length of the stretching wire and
(¢) the temperature of the wire.

The pressure and volume are considered to be constant.

2. Surface Films. For liquid films, in the study of surface
tension, the thermodynamic co-ordinates are

(a) the surface tension

(b) the area of the film and

(¢) the temperature.

3. Reversible Cells, The thcrmodyﬁamic coordinates to
completely describe a reversible cell are

(a) the EXMLF. of the cell

(b) the charge that flows and

(¢} the temperature.
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62 Thermal equilibrium and Concept of Temperaturé
jeroth Law of Thermodynamics)

A thermodynamic system is said to be in thermal equilibrivm
if any two of its independent thermoadynamic co-ordinates X and ¥ *-
remain constant as long as the external conditions remain unaltered.
Consider a gas enclosed in a cylinder fitted with a piston. If the
pressure and volume of the enclosed mass of gas are P and ¥ at the
temperature of the surroundings, these values of P and V will
remain constant as long as the external conditions viz. temperature
and pressure remain unaltered. The gasis said to be in thermal
equilibrium with the surroundings.

The zeroth law of thermodynamics was formulated after the
first and the second laws of thermodynamics have been enunciated.
This law helps to define the term temperature of a system,

This law states that if, of three systems, A, B ard C, A and B
are separately in thermal equilibrium with C, then A and B are also
in thermal equilibrium with one another.

Conversely the law can be stated as follows :

If three or more systems are in thermal contact, each to each,
by means of diathermal walls and are all in thermal equilibrium
together, then any two systems taken separately are in thermal
equilibrium with one another.

Consider three fluids 4, B and C. Let Pa, V, represent the
pressure and volume of 4, P, Vg, the pressure and volume ‘of B,
and Pc, V¢ are the pressure and volume of C, '

If A and B are in thermal equilibrium, then

1(Pa, Va) = ¢o(Pp, Vp)

or Fy(Pa,Va, Po, Vel =0 _ : we(8)
Expression (i) can be solved, and
Py = J\(Pa, Va, Vi) )

If B and C are in thermal equilibrium
$2(Pp, VB) = ¢a(Pc, V)
or Fy[Pg, ¥V, Pc, ¥c] = 0
Also Py = f,[Pg, Pe, Vo) L)

From cquadons () and (4id) for 4 - and C to be in thermal
equilibrium separately,

JuPa, Va, VB) = fofVs, Pe, V) ()

If A and C are in thermal equilibrium with B separately, then
according to the zeroth law, 4 and C are also in thermal equilibrium
with one another.

o FolPa, VA, Pc, V)= 0. e(V)

- Equation (iv) contains a variableV, whereas equation (r)
does not contain the variable Vg. It means

$1(Pa, Va) = os(Pe, Vc) o)

Numerieal — AR
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In general,

" (DA, Va) = (L8, Vi) = ¢3(Pc, V) i)

.....

These three functions have the same numerical value though
the parameters (P, V) of each are different. This numerical value
is termed as temperaturs (T) of the body.

. P by =T . o (01i)
This is called the equation of state of the fluid. \)y

Therefore, the temperature of a system can be defined as

* the property that determines whether or not the body is in thermal

equilibrium with the neighbouring systems. If a number of systems
are in thermal equiiibrium, this corumon property of the system can
be represented by a single numerical value called the temperature.
It means that if two systems are not in thermal equilibrium, - they
are at different temperatur- ..

Example. In a mcrcury in glass thermometer, the pressure
above the mercury column is zero and volume of mercury measures
the temperature. If a thermometer shows a constant reading in two
systems A4 and B separately, it will show the same reading even
when 4 and B are brought in contact.

6-3 Concept of Heat

Heat is defined as energy in transit. As it is not possible to
speak of work in a body, it is also not possible to speak of heat in a
body. Work is either dune on a body or by a body. Similarly, heat -
can flow from a body or to a body. Ifa body is at a constant tem-
perature, it has both mechanical and thermal energies due to the
molecular agitations and it is not possible to separate them. So, in
this case, we cannot talk of heat energy. It means, if the flow of
heat stops, the word heat cannot be used.” It is only used when
there is transfer of energy between two or more systems.

Consider two systems 4 and B in thermal contact with one
another and surrounded by adiabatic walls.

For the system 4, .
H =U,—U,+W ' ' (i)
where H is the heat energy transferred, U;is the initial internal
energy, U, is the final internal energy and W is the work done.

Similarly for the system B, -
B =Uy/-U/+W
Adding (¢) and (i)
HiH = (Uy—U)+ WU, U)W’
H4H = (Us+Uy)— (U4 Uy )]+ (W W) < (4%1)
The total change in the internal energy of the composite system
= [(Us+Uy)—(U,+U,%]

eali)

R




218 Heat and Thermodynamics

The work ¢nne by the cnmbositc system = W+ W’

It means that the heat transferred by the composite system
= H4H'. But the composite system is surrounded by adiabatic
walls and the net heat transferred is zero.

H+H =0
H=—-H ...(10)

Thus, for two systems 4 and B in thermal contact with each
other, and the composite system surrounded by adiabatic walls, the
heat gained by one system is- equal to the heat lost by the other
system, ' ’

64 Quasistatic Process

A system in thermodynamical equilibrium must satisfy the
following requirements strictly :—

(i) Mechanical Equilibrium. For a system to be in mecha-
nical equilibrium, there should be no unbalanced forces acting on
any part of the system or the system as a whole.

(1) Thermal Equilibrium. For a system to be in thermal
equilibrium, there should be no temperature difference between the
parts of tne system or between the system and the surroundings.

(t11) Chemical Equilibrium. For a system to be in chemical
equilibrium, there should be no chemical reaction within the system
and also no movement of any chemical constituent from one part of
the system to the other.

When a system is in thermodynamic equilibrium and the
surroundings are kept unchanged, there will be no motion and also
no work will be done. On the other hand, if the sum of the exter-
nal forces is altered, resulting in a finite unbalanced force actirz on
the system, the condition for mechanical equilibrium will not be
satisfied any longer. This results in the following :—

(¢) Due to unbalanced forces within the system, turbulence,
waves etc. may be set up. The system as a whole may possess an
accelerated motion.

(¢%) Due to turbulence, acceleration ete. the temperature dis-
tribution within the system may not be uniform. " There may also
exist a finite temperature difference between the system and the
surround ngs.

(#i) Due to the presence of unbalanced forces and difference
in temperature, chemical reaction may take place or there may be
movement of a chemical constituent. :

From this discussion, it is clear that a finite unbalanced force
may cause the system_to pass through non-equilibrium states. If
during a thermodynamic process, it is desired to describe every state
of a system by thermodynamic coordinates referred to the system as
a whole, the process should not be brought about by a finite un-
balanced force.
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A quasistatic process is defined as the proces: in which the
deviation from thermodynamic equilibrium is infinitesimal and all
the states through which the system passes during a quasistatic
process can be considered as equilibrium states. '

In actual practice, many processes closely approach a quasistas
tic process and may be treated as such with no significant error.
Consider the expansion ofa gas in a closed cylinder fitted with a
piston. Initially weights are on the piston and the pressure of the gas
inside the cylinder is higher than the atmospheric pressure. If the
weights are small and are taken off slowly one by one, the process
can be considered quasistatic. If, however, all the .weights are re.

- moved at once, expansion takes place suddenly and it will be a non-

equilibrium process.The system will not be in equilibrium at any
time during this process. :

A quasistatic process is an ideal concept that is applicable to
all thermodynamic systems including electric and magnetic systems.
1t should be noted that conditions for such a process can never be
satisfied rigorously in practice.

6-5 Heat—A Path Function

Heat is a path function. When a system changes from a state
1 to state 2, the quantity of heat transferred will depend upon the
intermediate stages through which the system passes i.e., its path.
Hence heat is an inexact differential and is written as 3H.

On integrating, we get
2A 2A
S $H = H
1A 1A
Here, ;H, represents the heat transferred during the given
process between the states 1 and 2 along a particular path A.
66 Work—A Path Function
Suppose that a system is taken from an initial equilibrium

state 1 to a final equilibrium state 2 by two " different paths A and B
(Fig. 6'1). The processes are quasistatic,

e

V————

Fig. 6-1
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The areas under these curves are different and hence the
nantites of work done are also different.

For the path A,

Foa 2A ' .
Wa = B = Pdv o(d)
1A 1A
For the path B
i 25 oW 2B P dy X
110 : le o] = SIB ...(vl)

The values of Wa and Wgare not equal. Therefore work
cannot be expressed as a difference between the values of some

property of the system in the two states. Therefore, it is not correct
to represent :

W,
W= J-W W =W, — W, ... {111)

1

It may be pointed out that it is meaningless to say ‘“work in a
system or work of a system”. Work canr~t be interpreted similar to

" temperature or pressure of a system.

In terms of calculus 3W is an inexact differential. It means
. ( '
that W is not a property of the system and J 3W cannot be express-
ed as.the difference between two quantities that depend entirely
on the initial and the fiual states.

Hence, heat and . work are path functions and they depend
only on the process They are not point functions such as pressure
or temperature. Work done in taking the system from state 1 to
state 2 will be different for different paths.

6-7 Comparison of Heat and Work

.are =

1. Heat and work are both transient phenomena. Systems do
not possess heat or work.

2. When a system undergoes a change, heat transfer or work
done may occur. ’

3. Heat and work are boundary phenomena. They are obser-
ved at the boundary of the sysiem.

4. Heat and work represent the energy crossing the boundary
of the system.

5. Heat and work are path functions and hence they are inexact
differentials. They are written as 8H and W,

6. (a) Heat is defined as the form of energy that is transferred
across a boundary by virtue of difference of temperature or tem-
perature gradient, :

(b) Work is said to be done by a system if the sole effect on

~ things external to the system could be the raising of a weight.

There are many similarities between heat and work. These

g

l\X
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Tt is customary to represent, work done by the system as 41,
work done on the systen as —ve; heat flowinginto the system ‘as
+ve, and heat flowing out of the system as —ve.

@ First Law of Thermodynamics

Joule’s law gives the relation between the work done and the
heat produced. It is true when the whole of the work done is used
in producing heat or vice versa. Here, W = JH where J is the Joule’s
mechanical equivalent of heat. - But in practice, when a certain
quantity of heat is supplied to a system the whole of the heat energy
may not be converted into work. Part of the heat may be used in
doing external work and the rest of the bheat might be used in
increasing the internal energy of the molecule et the quantity
of hedat supplied to a system be 8H, the amount Gf—external work
done be 8W and the increase in internal energy of the molecules be
dU}/The term U represents the internal energy of a gas due to mole-
cyfar agitation as well as due to the forces of inter-molecular attrac-

tion. athematically
SH = dUg_SW) ()

Equation (t) represents. the first law of thermodynamics. All
the quantities are measured in heat unit he first law of thermo-
dynamics states that the amount of heat given to a system'is_equal
to the sum of the increase in the internal energy of the system and
the external Work done.

For a cyclic process, “the change in the internal energy of the
system is zero because the system is brought back to the original

condition. Therefore for a cyclic process ﬁdU =0

and [ﬁ SH = }ﬁsw

{Both arc expressed in heat units].

... (i1)

This equation represents Joule’s law.

For a svstem carried through a cyclic . process, its initial and
final internal energies are equal. From the first law of thermodyna-
mics, for a system undergoing any number of complete cycles

Up—U, = 0
9‘5 SH ﬁ S
H

=W {Both are in heat units]
69 First Law of Thermodynamics for a Change in State of
a Closed System

For a closed system during a complcte cycle, the first law of
thermodynamics is written as

ﬁ 3H = gJ SH
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In practicc, however, we are also concerned with a process
rather than a cycle. Let the system undergo a cycle, changiog its

2

VY
Fig. 6:2

state from 1 to 2 along the path 4 and from 2 to 1 along the path B.
This cyclic process is represented in the P—V diagram (Fig. 6-2).

According to the first law of thermodynamics

ﬁ sa=ﬁsw

For the complete cyclic process

24 1B 24 1B
s 3H+ I sH = [ sw+ EaW )
14 2B 14 2B

Now, consider the second cycle in which the system thanges
from state 1 to state 2 along the path 4 and returns from state 2 to
state 1 along the path C. For this cyclic process

24 10 24 10
s SH4 I8H= S sw [ sw (i)
14 20 14 20
Subtraeting (5¢) from ()

1B 10 1B 10
S $He— [ 5H um X SW— SaW
8B 20 2B 20
1B 10

or ! CH—3F) = S (SH—37F) o (F)
B 20

Here B and‘C represent arbitrary processes between the states

1 and 2. Therefore, it can be concluded that the quantity (3H—3W)

ic the same for all processes between the states 1 and 2. The quantity
Py
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(3H —8W) depends only on the initial and the final states of the
system and is independent of the path followed between the two
states.

Let dE = (8H—3W)

From the above Jogic, it can be seen that
2
S dE = constant and is independent of the path.
i .

This naturally suggests that £ is a point function and dE 1 an
-exact differential.

The point function E is a property of the system,
Here dE is the derivative of F and- it is an exact differential.
3H—-3W = dE ()]
or SH = dE+3W eee(?®)

Integrating equation (v), from the initial state 1 to the final
state 2 :
1Hy = (By—Ey)+,W,
[Note. H4 cannot be written as (Hy—H),;), because it depends upon
the path].
Similarly, ;W cannot be written as (Wy—W,), because it also
dep ends upon the path.
Here 1H, represents the heat transferred,
1/ represents the work done,
E,; represents the total energy of the system in
state 2,

E, represents the total energy of the system in
state 1.

At this point, it is worthwhile discussing what this E can
possibly mean. With reference to the system, the energies crossing
the boundaries are all taken care of in the form of Hand W. For

dimensional stability of Eq. (v), this ¥ must be energy and this must

belong to the system. Therefore,
B, represents the energy of the system in state 2
B, represents the energy of the system in state 1

This energy E acquires a value at any given equilibrium con-
dition by virtue of its thermodynamic state. The working substance,
for example a gas, has molecules moving in all random fashion.
The molecules have energy associated by virtue of mutual attraction
and this part is similar to the potential energy of a body in macro-
scopic terms. They also have velocities and hence kinetic energy.
This energy E therefore can be visualised as comprising of molecular
potential and kinetic energies in addition to macroscopic potential
and kinetic energies. The first part, which owes jts existence to the
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thermodynai.i¢ naure is often cailed the internal energy which ic
comrletely dependent on the thermodynamic state: and the other
Wwo depend on mechanical or physical state of the system. '

E = U4+KF -+ PE4 Others which
nature etc.

depend upon chemical

For a closed system {non-chemical) the changes in all others
except U are insignificant and

» dE = dU
I'rom equation (v) ‘
SH = dU+8W NG |
Here all the quantities are in consistent units

Example 61. When a system is taken from the state 4 to the
stalc B, along the path ACB, 80 joules of heat flows into the system,
and the system does 30 joules of work (Fig. 6-3).

(2) How much heat flows into the system along the path ADB,
sf the work done is 10 joules.

(b) The system is returned from the state B to the state A along
the curved path. The work done on the system is 20 joules. Does the
system absord or liberate heat and how much ?

(¢) If Ua = €, Up = 40 joules, find the hcat absorbed in the
process AD and DB,

V
Fig. 63

Along the path ACB,

Hpcp = Up—Ua+4-W
H = 480 joules
W = 430 joules

Here

s +80 = Up—Ua+30

Ug—Ua = 80-—30 = 50 joules
(a) Along the path ADB, j
W = 410 joules
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Hapg = Ug - U+ W
H = 50410 = 60 joules
(b) For the curvced path from B to A,
W = —20 joules
H = (U\-Up)+W
= =50—20 = —70 joules
(—ve sign shows that heat is liberated by the system)
{c) Ua =0, Up = 40 joules
Un——UA = 50
Ugp = 50 joules

In the process 4DB, 10 joules of work is done. Work done
from 4 'to D is 410 joules and from D to B is zero,

For AD,
Hap = (Up—Ua)+W
For DB
Hpp = Uc—UD +W
== 50—40+4-0 = 10 joules
610 Applications of First Law of Thermodynamics
Specific Heat of a Gas (T and V Independent)

The internal energy of a system is a single valued function of
the state variables viz., pressure, volume, temperature etc. In the
case of a gas, any two of the variables P, V, T are sufficient to de-
fine completely its state. If ¥ and T are chosen as the independent

variables,
U=1v. 1) ()
Differentiating equation (1)
oU ' U
a0 = Koo ..
( oT )v aT+ (BV )TW o (15]
If an amount of heat 8H is supplied to a thermodynamica}

system, say an ideal gas and if the volume increases by 4V ata
constant pressure P, then according to the first law of thermodyna-
mics

SH = dU4-3W
Here W = Pdv
38 = dU4P.4v
Substituting the value of U from equation (§%)

U oU
$H — (-ﬁ,—)vdT-;.(—aV )T v 4 Pay
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Dividing both sides by 7

3H (U U ﬂ’_ pP.dv
ar = ("5‘1‘")v +(‘a“v')r ar +ar
8y (U U ]_{V_ "
or (—d—T ) = (—5—7’7 )v +[ P+(-—5-V— )T dT ...\'0)
If the gas is heated at constant volume,
, 8H
———— = C
& el )v v
av
.’Lﬂd -C_{T = O
. 8H _ aU o
N (—d'—f )v = ('aT- )v = Lv ...(v)

When the gas is heated at constant pressure,

SH
(—JT ), = ¢

. From equation (),

o= ()L 7437,
o= #(2), Y,

U | 4
or CP-—CV = ‘: P+(_g%"- )T ](%TM)P (Dﬁ

From Joule’s experiment, for an ideal gas on opening the stop-
cock, no work was done and no heat transfer took place.

So 8H = 0 = dU+40. Therefore, dU = 0. ~Even though the
volume changed while the temperature is constamt, there is no
change in internal energy.

aU
92 0
( av )'r
From the ideal gas equation
PV = RT
o¥ i
or P (—8—7—,—>P =R e r(VF)
AV - aU / aV
> [ 97 av
CrmCy o=t ( 7 ): +('a‘7“)~x BT\f},
{/ aliyv N
But \ar }T b
T LA
('pm Cyp = P('T,)p' R
Cp— Lo = B .t

Thermodynamics 227

Here Cp, Cy and R are expressed in the same units.

From equation (s1)
oU ol ,
= - d .es
8 = (i), ”[” (W)r]‘”’ +=)

For a process at constant temperature
aT =0

G = PP+ (2 ) @ e

This equation represents the amount of heat energy supplied
0 a system in an isothermal reversible process and is equal to the
sum of the work doné by the system and the increase in its internal
energy.

For a reversible adiabatic process
8H =0,

Therefore, from equation (iz),

o= cena{ o+ (), J

U
or CyiT = — [P-.{- (%V—)r ]dV

Dividing throughout by dV,

o(5)=-[+(%).] e

The isobaric volume coefficient of expansion

_ lrer
e=y aT),

Co—C
. (), - () o

o 55 ) == [ (), o
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From equations (x35) and (xiv)
()=~ (55
( o7 ) — Cv—Cr

14
This expression holds good for an adiabatic reversible process.

.o(2V)

or

6-11 Isothermal Process
If a system is perfectly conducting to the surroundings and

the temperature remains constant throughout the process, it is called -

V——

Fig. 6-4

an isotherma' process) Consider a working substance at a certain
" pressure and temperature and having a volume represented by the
point 4 (Fig. 64).

Pressure is decreased and work is done by the working sub-
stance at the cost of its internal energy and there should | be fall in
temperature. But, the system is perfectly conducting to.the'surround-
ings. It absorbs heat from the surroundings and maintains a cons-
tant temperature. Thus from 4 to B the temperature remains cons-
tant. 1nccurve AB is called the ssothermal curve or ssothermal.

Consider the working substance at the point B and let the
pressure be increased. External work is done on the working sub-
stance and there should be rise in temperature. But the system is
perfectly conducting to the surroundings. It gives extra heat to the
surroundings and its temperature remains constant from B to 4.

Thus, during the isothermal process, the temperature of the
working substance remains _constant. It can absorb heat or give
heat to the surroundings. The equation for an isothermal process is

PV — RT = constant [For one gram molecule of a gas.}

For n gram molecules of a gas PV = nRY )

6-12 Adiabatic process

During an adiabatic process, the working substance is perfectly
insulated from the surroundjngs It can nc:xthcr give heat nor take
heat from the surroundings.) When work is done on the working
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substance, there is rise in temperature because the extcrnat work
done on the working substance increases its internal ezergy. When
work is done by the working substance, it is done at the cost of its
internal energy. As the system is perfectly insulated from the
surroundings, there is fall in_temperature. '

Thus, during an adiabatic process, the working substance 1=
perfettly insulated from the surroundings. All along the process,
there is change in temperature. A curve between pressure and
volume during the adiabatic process is called an adiabatic curve or
an adiabatic.

Examples, 1. The compression of the mixture of oil vapour
1nd air during compression stroke of an internal combustion is an
adiabatic process and there is rise in temperature.

2. The expansion of the combustion products during the
working stroke of an engine is an adiabatic process and there is fall
in temperature.

3. The sudden bursting of a cycle tube is an adiabatic
process. .

Apply the first law of thermodynamics to an adiabatic process,

3H = dU4-3W
or 0 =dU43W . o(%)

The processes that take place suddenly or quickly are adiabatic
processes.

613 Isochoric Process

CIf the working substance is taken in a non-expanding chamber,
the heat supplied will increase the pressure and temperature. The
volume of the substance will remain constant. Such a process is
called an tsochoric proceaa.)/ The work done is zero because there is
no change in volume. The whole of the heat supplied increases
the internal energy. Therefore, during the isochoric process W =0,

H = dU ()
The heat transferred in such a process
$H = 04T
CdT = 38U s (96)

Hence C, is the specific heat for one gram-molecule of a gas at -
constant volume.

614 Isobaric Process

If the working substance is taken in an expanding chamber
kept at a constant pressure, the process is called an isobanic piveess
Here, the temperature and volume change. Ifan amount of hea
3H is given to the working substance, it is partly used in increasing
the temperature of the working substance by 4T and n=-' -7
in doing external work. Considering one gra— . wwrKInR
substance,
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3H = 1xc.dfz'+f_",ﬂ )
But 3H = 0,dT (i)
PdV = rdT
04T = CpdT+ L3F
Op—Co = o (§55)

Here 0, and Oy rcprcsént the specific heats for 1 gram of a gas
and r is the ordinary gas constant.
If C, and O, are the gram-molecular specific heats of gas, then
R .
O0py—Cp = T ...(t0)

e R is the universal gas constant.
.15/ Gas Equation During an Adiabatic Process

Consider 1 gram of the working substance (ideal gas) perfectly
insulated from the surroundings. Let the external work done by the
gas be 3W.

Applying the first law of thermodynamics

. 8H = dU+-3W
But $H =0
and 3W = P4V
where P is the pressure of the gas and dV is the change in volume.
0= dU+1-D—';Z (9}

As the external work 1s done by the gas at the cost of its inter-
nal energy, there is fall in temperature by dT. ,
dU = 1 xCoxdT

C,.dT+I-—,'7§Z = Oy 4 .. (i)
For an ideal gas
PV =T . vee(B88)
Differentiating, fgpl +v do
P.3V4V.dP = rdT . \&7 = ~

Substituting the value of 4T in equation (%4),
4P  P.av
o[ PP ET

CqPAT+VidPI+r. o = 0

But, T;‘" = Cp—QG
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0, P.AV +CoV.dP+Cy PAV=CoPdV = 0
C,P.dV+CyV.dP =0
Dividing by C.PV,
o, oV 4P

vt 0
v b,

But O":Y
dP av

5Ty =0

S ;
Integrating; log P+ylogV = const. ,2) [-é‘f:f ‘}kﬁv
log PVY = const. B

or PVY = const. V7

) This is the equation connecting pressure and volume during .
sdiabatic process.
Taking PV = rT
T
or P = —
V
rT
(-—V—) . VY = const.

But r is const.
TV ¥-1 = const.
TVY"! = const.

Also V= _'I_z’_' N\
' [
P[:f%-:]y == const. i\
., [
YT :
or I—P:_—l- = chst. \\\\\
) Py-l ''''''
or Ty = const.

“Thus,during an adiabatic process
Wy PVY = const. ‘
(##  TV7y-L const. and

¥-1

T
mple 6-2. A motor car tyre has a pressure of 2 aim
pheres at the room temperature of 27°C. Ifthe tyre suddenly burs:.
find the resulting temperature,

(424 = const.

-
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Hare, P, = 2 atmospheres

T, = 2724.27
. = 300K
Py = 1 atmosphere
Ty =%
Y= 14

P72 P71

Ty T T,

—_
oo
SN
)

!

- (&)
(5)= ()

0-4 log (0.5) 1-4 [log T3—log 300]

01204 = 14 log Ty—3-4680
14 log Ty = 3-4680—0-1204

= 3-3476
3-3476
log Ty = ~17-
= 23911
Ty, = 246-1 K
= —26:9°C

/anmple 63. A4 quantity of air at 27°C and atmospheric pres.
-+ suddenly compressed to "half its original volume, Find the
'*} pressure and (%) temperature, '

(¥) Py = 1 atmosphere; Py = 1, y =14
Vl = V ;

During sudden compression, the process is adiabatic
PV, = PV,”

« Y
P, = P, %
= I[2]1-¢
= 2636 atmospheres
Ty =300K; T, =1
Y= 14
TyV3}Y1 = Ty (V)72
T, = Tl[2]x.4-1
= 300[2]0+
= 3959 K
= 122-9°C

Y
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Example 64. Air s

volume. Calculate the change in its temperature.

£33

compressed  adiabatically to half its
(Delhs 1989)

Let the initial temperature be 7', K and the final temperature

T, K.
Initial volume —
Final volume

Vs

=7,

Vs
2

During an adiabatic process

TV, 74,
T2 =

Ty =
But ¥ for air =
T' =

T, =
T’ ==
Change in temperature

v Example 6-5. I gram

TZ'Vz'Y—l

v, -1
7] ]
Th|2f>2
1°40
T1[2]lo‘0'1
T2
l '3 l 9 Tl

Ty—-T,

1-319 1", --T,

0319 T, K

molecule of a monoatomic (y = 5/3)

perfect gas at 21°C is adiabatically compressed in a reversible
Jrom an initial pressure of 1 atmosphere to a final pressure of 60
atmospheres. Calculate the resulting difference in temperature. '

[Delhi (Hona.) 1973)

In a reversible adiabatic process

P71 P,y
Ty T T
P, \7-1 T, \7
or (7)" = (=)
Hcre, P, = 50,
P, =1,
T, = 273427
= 300K
Ty =1
L
’=73
T, \sn
(5035 = (_3_6_0_)
2 5 ‘
or 5 log (50) = 5 {log T'5—log 300)
Ty =144 K
= 1,161°C

e
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\)g:mple 66. A quantity of dry air at 27°C is compressed

(%) slowly and (is) suddenly to 1/3 of its volume. Find the change in
temperature in each case, assuming y ¢ be 14 for dry asr.

{Agra 1969 ; Delhi 71, 75)

(1) When the process isslow, the temperature of the system

remains _constant. Therefore,

temperature.
(2) When the compression is sudden, the process is ac'iabatic.
. Here V, =7, V,__._%
T, = 300 K, T, =1
y=14
Ty ()77 =T, V)7
Vy -1
Ty, = T,| 5*
v 2 1[ V2_|
' 3y 1
or T, = 300 [7‘]
= 300 [3]-4-1
or T; = 4655 K
= 192:5 °C

The temperature of air increases by
192:5—27 = 165:5°C or 1655 K

/Example 6'7. A certain mass of gas at NTP is expanded to
three times its volume wunder adiabatic conditions. Calculate the
resulting temperature and pressure. v for the gas is 1-40.

{Delhi (Homns.) 76}

(1) Here, V=V, V, = 3F
T, V77t = T3 Vvt
1
or Ty=1T, —Z—‘—]y

72
T 3 1 1.4=-1

T, = 176 K = —97°C
@) Here, Vy, =V, Py 3V
P, = 1 atmosphere, P, =1
PyVyY = Py Vy?

P2=P1 "‘;’—:]y
1 .\

M)

P, = 02148 atmosphere _/

or P,

there. is no change in

AW
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)&ﬁ/ Slopes of Adiabatics and Isothermals
In an isothermal process
PV = const. :
Differentiating, .‘ (;? - P év
PAV4+VdP =0 => Vo
dpP P .
or 'W = —-7' _..(5)

In an adiabatic process

PVY = const.

Diﬂ'erc&tialting, ;
Pyt 4V {VdP =
- iP P ..
av = - —‘{/— (1))
Therefore, the slope of an adiabatic is Y times the slope of the

isothermal.

Fig. 6-6

Hence, the adiabatic curve is steeper than the isothermal curve

(Fig. 65) at a point where the two curves intersect each other_.) "
17 Work Done During an Isothermal Process
isothermal i roce

When a gas is allowed to expand isothermally, work is done
by it.

Let the initial and final volumes be ¥y and V; respectively. In

Fir. %66, the area of the shaded strip represents the work done for
2 small change in volume dV. When the volume changes from ¥,

to Vl:
V. N
Work done = | P.av = area 4Bla (i)
- 1

Fig. 6-6 represents the indicator diagram. Considering one
gram molecule of the gas

PY = RT
p-EL

or vV
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V"!Z

W=RTSV1 v

i
!
1
P |
1
]
t
|
o} 4
v
! v 2
Fig. 66
vy
= RT ]Oge ‘—/l' .
Vs
W = RT x2.3026 log,, — . (i) -
10y,
k|
Also 1’1V, = P)_Vg_
\"2 I)l

Py

W = RT x2.3026 x log, 7 U(:/
Here, the change in the internal energy of the system is zero (because

the temperature remains constant). So the heat transferred is equal to the work

done.

9\ /ﬁS Work Done During an Adiabatic Process

During an adiabatic process, the gas expands from volume Vito V2. As
shown by the indicator diagram (Fig. 6.7) the work done for an increase n

volume dV = P.dV. Work done when the gas expands from Vj 1o V2 1s given
by,

vV,
W = j PdV = Area ABba
v

I

i)
v

@
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During an adiabatic process,

PV’:const_e,‘K
K A
or P=—V7— \i&
Vs d
s g

1 1 1- .
I—y L Va7t~ P77 ()

Since Aand B lie on the same adiabatic
PVT = PJV," =K

1 K K
W= T—y [ V71 T P71 ]

o L [BFY PP
I P L P,71 - 717-1

1 .

== —I—;——; [P’VQ—PXVI ] . ...(t‘)

“Taking T, and T, as the temperatures at the points 4 and B
respectively and considering one gram molecule of the gas

Py, = BT,
and P,y = RT,
Substituting these values in eguation (1)

W= 1 [RT,-RT,]

T—y .ea(831)

Here, heat transferred is zero because the system is thermally
insulated from the surroundings. The decrease in the internal
energy of the system (due to fall in temperature) is equal to the
work done by the system and vice versa. .

2.
/34-19. Relation Between Adiabatic and Isothermal Elasticities

1. Isothermal Elasticity

During an isothermal process ~
PV = const
Differentiating, _
PaVAViP =0 » VAP = P dv
.apP .
or -%v‘ =P ...(‘)
From the decfinition of elasticity of a gas
=y dP
toe = —av /V
VdP ..
=—47 ces(B}
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From () and (s7)
E‘.. 1. P "‘(“i)

2. Adiabatic Elasticity

During an adiabatic process
PVY = const

Differentiating, PYV Y"1V 4-V7dP = 0

¥YdpP .
or m— = 'fP ...(w)
From the definition of elasticity of a gas
B — arP
adt = ) ) 4
V.dpP
= av (V)
From (iv) and (v),
Eey = YP oee(th)
Comparing (#4) and (vi)
Eoa = YE 4

Thus, the adiabatic elasticity of a gas is v times the isothermal -

elasticity. A :
620 Clement and Desormes Method —Determination of ¥

Clement and Desormes in 1819 designed an experiment to find
7, the ratio between the two specific heats of a gas.

[
Yol
|1'1:h‘

ity
Hith

[ ]

14t
IHH
L gt

— e o o

Fig. 6:8

The vessel A hasa capacity of 20 to 30 litres and is fitted in
2 box centaining cotton and wool. At the top end, three tubes
are firted as shown in Fig. 6:8. Through 8,, dry air is {orced into
the vessel A, The stop cock 8, is closed when the pressure inside
A i5 slightly greater than the atmospheric pressure. Let the
Jdifference in level on the two sides of the manometer be H and

Tnermodynamics 239

thie atmospheric pressure be Py. The ~ressure of air inside the vessel
is Py. .

The stop-cock S is suddenly opened and closed just at the
moment when the levels of the liquid on the two sides of the mano-
meter are the same. Some quantity of air escapes to the atmosphere.
The air inside the vessel expands adiabatically. The temperature of
air inside the vessel falls due to adiabatic expansion. The air inside
the vessel is allowed to gain heat from the surroundings and it finally
attains the temperature of the surioundings. Let the pressure at the
<nd be P, and the difference in levels on the two sides of the mano-
meter be A.

Theory. Consider a fixed mass of air left in the vessel in the
end. This mass of air has expanded from volume V; (less than the
volume of the vessel) at pressure P; to volume V, at pressure Pg.
The process is adiabatic as shown by the curve 4B (Fig. 6-9).

PlVly = PoV.y

P Vs \? .
. v = (7) 0
Finally the point C is reached. The points 4 and C are at the

room temperature. Therefore AC can be considered as an isother-
mal.

P1V1 = PQV’
V! Pl .
Tl_ = -—P-—’- ...(5‘)
A
B .\~

P, _(P\”
B, “\ 7,

Taking logarithms,
log Py—log Py = Y[log Py—log Pyl

™o ks
y = Log Ii—log i i
= P
log Py—iog Py

R
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EBut Py = P+ H and Py = Py+h
_  log(Py+H)—log Py
= log(P,+ Hy—log (Po+ A)

P,+H
log P, )

Y =1 P+ H
°8 (Po+h

H
log (l-{— ——I—,;-)

A
Approximately, Y = Hfoh = E[éh
Py
Hence Y = H—H_;% .-(10)

Similarly, ¥ for any gas can be determined by this method.

Drawbacks. When the stop-cock is opened, a series of oscilla-
tions are sect up. This is shown by the up and down movement of
the liquid in the manometer. Therefore, the exact moment
when the stopcock should be closed is not known. The pressure may
not be equal to the atmospheric pressure when the stop-cock is
closed. It may be higher or less than the atmospheric pressure.
Thus the result obtained will not be accurate.

621 Partington’s Method

Lummer, Pringsheim and Partington designed an apparatus
to determine the value of ¥. In this method, the pressure an_d
temperature are measured accurately before and after the adiabatic

expansion.

K2

Fig. 6:10

The apparatus consiste of a vessel 4 having a capacity between
130 and 150 litres. The valve L can be opened and closed suddenly.
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It is controlled by a spring arrangement (Fig. 6:10).  Dry air (or gas)
at a pressure higher than the atn.ospheric pressure is forced into the
vessel 4 and the stop-cock 8 is closed. The cil manometer M is
used to mcasure the pressure of air inside the vessel 4. The bolo-
meter B (a platinum wire) and a sensitive galvanometer are used in
the Wheatstone’s bridge arrangement. '

The vessel is surrounded by a constant temperature bath. Let
the initial pressure and temperature be P, and T, (room tempera-
ture). The bridge is kept slightly disturbed from the balanced
position. The valve L is suddenly opened and closed. The Wheat-
stones bridge is at once adjusted for balanced position. The tempera-
ture of air inside 4 has decreased due to adiabatic expansion of air.
Let the temperature inside be 7', and the atmospheric pressure P,. If
the apparatus is allowed to remain as such for some time, it will gain
heat from the surroundings and the balance point gets disturbed. In
order that the balance point remains undisturbed, some pieces of ice
are added into the water surrounding the vessel 4. When the tem-
perature of water bath is the same as that of air just after adiabatic
expansion, the bridge will remain balanced.

The temperature T of the bath represents the temperature of
air after the adiabatic expansion. .

P17 1 Pov-l

Ty Ty

P71 T,\7
(7)) (%)
(Y—1)(log Py—log Py) = ¥ [log Ty,—log T}
-~ log Py—log P,
T= (log Py—log Po)—(log T,—Tog T)
As P,, P,, T; and T, are known, ¥ can Le calculated. The
value of Y for air at 17°C is found to be 1-4034.

Advantages. (1) Due to the large volume of the vessel, the
expansion is adiabatic.

(2) The temperatures are measured accurately just before
and after the adiabatic expansion.

Drawbacks. This method cannot be used to find the value
of ¥ at higher temperatures because it i$ not possible to determine
the cooling correction accurately.

622 Ruchhardt’s Experiment

*_In 1929, Ruchhardt designed an apparatus to find the value of
Y. Itis based on the principle of mechanics. Air {or gas) is enclosed
in a big jar (Fig.6:11). A tube of uniform area of cross section is
fitted and a ball of mass m fits in the tube just like a piston. In the
equilibrium position, the ball is at the point A. The pressure P of
air inside the vessel, is given by

-

P=Po+_":4g.
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Irreversible Process

The thermodynamical state of a system can be defined with
the help of the thermodynamical coordinates of the system. The
state of a system can be changed by altering the thermodynamical
coordinates. Changing from one state to the other by changing the
thermodynamical coordinates is called a process,

Consider two states of a system s.e., state A and state B.
Change of state from 4 to B or vice versa is a process and the direc-
tion of the process will depend upon a new thermodynamical coor-
dinate called entropy. All processes are not possible in the universe.

Consider the following processes :

(1) Let two blocks 4 and B at different temperatures 7, and
T, (T1>1T,) be kept in contact but the system as a whole is insulat-
ed from the surroundings. Conduction of heat takes place between
the blocks, the temperature of 4 falls and the temperature of B
rises and thermodynamical equilibrium will be reached. -

(2) Consider a flywheel rotating with_an angular velocity w.
Its initial kinetic energy is $/w?. After some time the wheel comes
to rest and kinetic energy is utilised in overcoming friction at the
bearings. The temperature of the wheel and the bearings rises and
the increase in their internal energy is equal to the original kinetic
energy of the fly wheel.

(3) Consider two flasks 4 and B connected by a glass tube
provided with a stop cock. Let 4 contain air at high pressure and
B is evacuated. The system is isolated from the surroundings. If
the stop cock is opened, air rushes from 4 to B, the pressure in'4
decgeases and the volume of air increases.

All the above three examples though different, are thermody-
namical processes involving change in thermodynamical coordinates.
Also, in accordance with the first law of thermodynamics, the princi-
pl e of conservation of energy is not violated because the total energy
of the system is conserved. Itis also clear that, with the initia]l con-
ditions described above, the three processes will take place.

Let us consider the possibility of the above three processes.
taking place in the reverse direction. In the first case, if the reverse
process is possible, the block B should transfer heat to'4 and initial
conditions should be restored. In the second case, if the reverse
process is possible, the heat energy must again change to kinetic
energy and the fly wheel should start rotating with the initial angu-
lar velocity w. In the third case, if the reverse process is possible
the air in B must flow back to 4 and the initial condition should be
obtained.

~ But, it is a matter of common experience, that none of the
above conditions for the reverse processes are reached. It means
that the direction of the process cannot be determined by knowing
the thermodynamical coordinates in the two end states. To deter.
mine the direction of the process a new thermodynamical coordinate
his been devised by Clausius and this is called the entropy of the

system. Similar to internal energy, entropy is also a function of the
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state of a syst:m. For any possible process, the entropy of an isolat-
ed system should increase or remain constant. The process in which
there is a possibility of decrease in entropy cannot take place.

If the entropy of an isolated system is maximum, any change
of state will mean decrease in entropy and hence that change of
state will not take place.

To conclude, processes. in which the entropy of an tsolated
system decreases do not tirke place or for all processes taking place
sn an ssolated system the entropy of the system should increase or
remain constant. It means a process is irreversible if the entropy
decreases when the direction of the process is reversed. A process is
said to be irreversible if it cannot be retraced back eXactly in the -
opposite direction.  During an irreversible process, heat energy is
always used to overcome Triction, ~Eneérgy is also diSsipated in the
form of condiiction and fadiation. This loss of enérgy always takes -
place whether thecngine works in one _direction or the reverse di-
rection. ..Such energy cannot be regained. In actual practice all
the engines are irreversible. If electric current is passed through a

_ wire, heat is produced. If the direction of the current is reversed,

heat is again produced. This is also an example of an irreversible

" process. All chemical reactions are irreversible. In general, all

natural processes are irreversible.

624 Reversible Process
From the thermodynamical point of view, a .reversible process

is one in which an infinitesimally small change in the ~external con-

ditions will result in all'the changes taking place in the direct pro-

cess but exactly repeated in _the reverse order and in_the opposite
sense. The process should take place at an extremely slow rate. In

i"rféu\}g?im_l_c,cﬁl‘t;—‘h&ﬁshou’rd’mrﬁé any loss of heat due to friction
or radiation. In this process, the initial conditions of.the. working

substance can be obtained. . —

Consider a cylinder, containing a gas at a certain pressure and
temperature. The cylinder is fitted with a frictionless piston. If
the pressure is decreased, the gas expands slowly and maintains ‘a
constant temperature (isothermal process). The energy required for
this expansion is continuously drawn from the source (surroundings).
If the pressure on the piston is increased, the gas contracts slowly
and maintains constant temperature (isothermal process). The energy
liberated during compression is given to the sink (surroundings).
This is also true for an adiabatic process provided the process takes
place infinitely slowly. '

The process will not be reversible if there is any loss of heat
due to friction, radiation or conduction. If the changes take place
rapidly, the process will not be reversible. The energy used in over-
coming friction ot be retraced.

ditions of reversibility for any heat engine or process

as follows :—

he pressure and temperature of the working substance
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must not differ appreciably from those of the surroundings at any
stage of the cycle of operation. )

r11)/{ﬂlt /proccsscs ‘taking place in the cycle of o,pcration
must %'c infifiitel

y slow,

Q)/I‘hc w’érking parts of the engine must be completely free
from friction. :

{¢)“There should not be any loss_of energy due to conduction
or radiation during the cycle of operation. .

It should be remembered that the complete reversible process
or cycle of operation is only an ideal case. Inan_ actual process,
there is always loss of heat due to friction, conduction or radiation.
The temperature and pressure of the working substance differ appre-
ciably from those of the surroundings.

@@5 Second Law of Thermodynamics

A heat engine is chiefly conccrm;d with the conversion of heat-
energy into mechanical work. A refrigerator is a device to cool a
certain space below the temperature 9f its surroundings. The first
law of thermodynamics is a qualitative staterent which does not
preclude the possibility of the existence of either a heat engine or a
refrigerator. The first law does not contradict the éxistence of a
lOO‘i efficient heat engine or a self-acting refrigerator.

In practice, these two are not attainable. These phcnorfxgna
are recognized and this led to the formulation of a law governing
these two devices. It is called second law of thermodynamics. \

A new term reservoir is used to explain the second law. A
reservoir is a device having infinite _t!}_gr;g_al capacity ?.nd which
can absorb, retain or reject qnlimited_q’ixaﬁtxﬁ'df heat without any

R

change in its temperature.” -

Kelvin-Planck statement of the second law is as follows :

* «It is impossible toc get a continuous supply of work from a
body (or engine) which can transfer heat with a single heat reservoir.,
“This is a negative statement. According to_this statement, a single

- reservoir at a single temperature cannot continuously transfer heat
into work. It means that there should be two reservoirs for any heat
engine. Ope reservoir (called the source) is .takcr}, at a_higher tem-
perature and the other reservoir (callgd’_thggn_kl_lg_m\kgl_gt_g\l_ﬂcr

IR,

temperatare. .

~ According to this statement, zero degree absolute temperature -
is not attainable because no heat is rejected to the sink at zero deg-
ree Kelvin. If an engine ‘works between any temperature higher
than zero degree Kelvin and zero degree Kelvin,,it means it uses a
single reservoir which contradicts Kelvin-Planck’s statement of the
second law. Similarly, no engine can be 100% efficient.

. In a heat engine, the engine draws heat from the source and
after doing some external work, it rejects the remaining heat to the
sink. The source and sink are of infinite thermal capacity and they
maintain constant temperature.

WL
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First Part. According to Kelvin, the second law can also be
stated as follows : R

~ “Itisimpossible to get_ a  continuous supply of work from a

body by cooling it to a temperature lower than that of its surround-

» U —

In a heat engine the working substance does some work and
rejects the remaining heat to the sink. The temperature of the
source must be higher than the surroundings and the engine will not
work when the temperatures of the source and the sink are the same.
Take the case of a steam engine. The steam (working substance) at
Ligh pressure is introduced into the cylinder of the engine. Steam
expands, and it does external work. The contents remaining behind
after doing work are rejected to the surroundings. The temperature
of the working substance rejected to the surroundings is higher than
the temperature of the surroundings. .

1f this working substance rejected by the first engine is used in
another engine, it can do work and the temperature of the working
substance will fall further.

| It means that the working substance can do work only ifits
temperature is higher than that of the surroundings. :

Second Part, According to Clausius :
“It is impossible to make heat flow from a body at a lower

temperature to a body at_a_higher temperature without doing ex-
ternal work on the working substance. ’\’//,

This part is applicable in the case of ice plants and refrigera-
tors. Heat itself cannot flow from a body at a lower temperature to
a body at a higher temperature. But, it is possible, if some external
work is done on the working substance. Take the case of ammonia
ice plaut. Ammonia is the working substance. Liquid ammonia at
low pressure takes heat from the brine solution in the brine tank and
is converted to low pressure vapour. External work is done to com-
press the ammonia vapours to high pressure. This ammonia at high
pressure is passed through coils over which water at room tempera-
ture is poured. Ammonia vapour gives heat to water at room tempe-
rature and gets itself converted into liquid again. This high pressure
liquid ammonia is throttled to low pressure liquid ammonia. In the
whole process ammonia (the working substance) takes heat from
brine solution (at a lower temperature) and gives heat to water at
room temperature (at a higher temperature). This is possible only
due to the external work done on ammonia by the piston in comp- -
ressing it. The only work of electricity in the ammonia ice plant is
to move the piston to do external work on ammonia. 1If the exter-
nal work is not done, no ice plant or refrigerator will work. Hence,
it is possible to make heat flow from a body at a lower temperature
to a body at a higher temperature by doing exterfal work on the
working substance. ‘

Thus, the second law of thermodynamics plays an important
part for practical devices e.g., heat engines and refrigerators. The
first law of thermodynamics only gives the relation between the
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d the heat produced. But the sccond law of thermo-
ives the conditions under which heat can  be converted

work done
dvnamics/
into w

626 , Carnot’s Reversible Engine

“. ..~ Heat engines are used to convert heat into mechanical work.

Sadi Carnot (French) conceived a theoretical engine which is {ree

from all the defects of practical engines. Iis efficiency is maximum |

and 1t is an i1deal heat engine.
For any engine, there are three essential requisites :

(1) Source. The source should be at a fixed high temperature
T, from wHich the heat engine can draw heat. It has infinite thermal
capacity and any amount of heat can be drawn from it at constant
temperature 7';.

(2) Sink, The sink should be at a fixed lower temperature
T, to which any amount of heat can be rejected. Tt also has infinite
thermal capacity and its temperature remains constant at 7',

(3) Working Substance, A cylinder with non-conducting
sides and conducting bottom contains the perfect gas as the working
substance.

WORKING
SUBSTANCE
CONDUCTING > CONDUCTING
“« %
%
7
SOURCE 2
zZ
Z Z 7
Grsr A
ATTh ATT:

Fig. 6-12.
A perfect non-conducting and frictionless. piston is fitted into
the cylinder. The working substance undergoes a complete cyclic
operation (Fig. 6:12).

A perfectly non-conducting stand is also provided so that
the working substance can undergo adiabatic operation.

Carno)t’;/Cyclé

wﬁ(& (¥} Place the engine containing the working substance over

“the source at temperature 7y, The working substarice is also at a
temperature 7', Its pressureis P, and volume is ¥, as shown by
the point 4 in Fig. 6'13. Decrease the pressure. The volume
of the working substance increases. Work is done by the working
substance. As the bottom is perfectly conducting to the source at
temperature 7', it absorbs heat. The process is completely isother-
mal. The temperature remains constant. Let the amount of heat
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absorbed by the working substance be H, at the temperature 7.
The point B is obtained. |

Consider one gram molecule of the working substance,
Work done from 4 to B (isothermal process)

Vs v
L= SV: P.aV — ET; log"
= arca ABGE )

(2) Place the engine on the stand having an insulated top.
Decrease the pressure on the working substance. The volume

AR, V)

——

]
~
M e e e e B9
=
~
=)

]
i
Hy,
: 2T | C (% ' V3)
'
. L
' 1 '
! b
[ S N 4 1 L
F G H
Ve

Fig. 6-13

increases. The process is completely adiabatic. Work is done by
the working substance at the cost of its internal energy. The tem-
perature falls. The working substance undergoes adiabatic change
from B w0 C. At C the temperature is Ty (Fig. 6:13).

Work done from B to C (adiabatic process)

Vs But PVY = constant = K
= P.dv
- Wi §v-2 PV, = RT,
_ (Vs dV )
v, V7Y PV, = RT,
KV -y _EV,1-7
1—-7 PVsY = PV,Y = K
PP,
R[T,-—-TI] Rl_Tl-Tﬂ]
1—y 7=l
W, = Area BOHG . . cee(80)

T
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(3) Place the engine on the sink at temperature 7',. Increase
the pressure. The work is done on the working substance. As the
base is conducting to the sink, the process is isothermal. A quantity
of heat H, is rejected to the sink at temperature Ty. Finally the
point D is reached.

Work do/n;e‘: from C to D (isothermal process)

T = s::‘ Pav

= RT, log —E;i—
3

|4
= —RT, log — oo (388},

\ﬁ s = area CHFD

(The —ve sign indicates that work is done on the working
substance.) .

(4) Place the engine on the insulating stand. Increase the
pressure. The volume decreases. The process is completely
adiabatic. The temperature rises and finally the point 4 is reached.

Work done from D to A (adiabatic process).

14
W, = j ! pav
Ve
R(T,—T,)
4 Y=l A
M= Area DFEA ...(iv) ’ 6""0’

b -
(W5 and W, are equal and opposite and cancel each other.]/gr \/7:/
e

The net work done by the working substance in one complete

cycle . :
= Area ABGE +{+Area BCHG—Area CHFD
—Area DFEA
= Area ABCD '
The net amount of heat absorbed by the working substance
= HI_H’ -
Net work = W,+W,y+Wy+-W,
Vs R(T—T)) Vs R[T\—T,)
'V, Vs
W = RTl log—V;-——RTg log ?:- ...(v)
The points 4 and D are on the same adiabatic
TWirt= TV,
T, Vy \7? .
T} - ( V‘ ) ...(vs)
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The points B and O are on the same adiabatic
T\t = T,F,71

'%:‘ = (%)7_1 ' ...(v8E)

From (vi) and (vit)

(7)) =(m)"

Vi Vs
or "W V- l,'a
V. Vs
or _~V—1' == V‘

From equation (v)

W = RT; log~A —RT,log 1 :

Vy Vi
Vs
W = R[log 4 :[TI—T,] .
1
W = HI—H2
. Useful output w
Efficiency N = Tnpat P A

Heat is supplied from the source from 4 to B only.

H, = RT, log II:—’
1

W H—H,
"= H, T H -
V 4«—1"‘ o Tl/’
R(T,—Tg | (-—’) ! —
_ Ty ) -y
. s ’
RT, log (V—) T
H = =
or n = 1'——7;3‘ : T(
T2 LX)
n= l-— roy «o(vis3)

The Carnot's engine is perfectly reversible. It can be operated
in the reverse direction also. Then it works as a refrigerator.
The heat H, is taken from the sink and external work is done on the
working substance and heat H, is given to the source ata higher
temperature.

The isothermal process will take place only when the piston
moves very slowly to give enough time for the heat transfer to take
place. The adiabatic process will take place when the piston moves.

o
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extremely fast to avoid heat transfer. Any practical engine cannot
satisfy these conditions. -

All practical engines have an efficiency less than the Carnot’s
ergine.

627 Carnot’s Engine and Refrigerator

‘Carnot’s cycle is perfectly reversible. It can work as a heat
engine and also as a refrigerator. When it works as a heat engine,
it absorbs a quantity of heat H,; from the source at a temperature T,
does an amount of work W and rejects an amount of heat H, to the
sink at temperature 7',. When it works as a refrigerator, it absorbs
heat H; from the sink at temperature T,. W amount of work is done
on it by some external means and rejects heat H; to the source at a
temperature T'; (Fig. 6-14). In the second case heat flows from a
body at a lower temperature to a body ata higher temperature,
with the help of external work done on the working substance and it
works as a refrigerator. This will not be possible if the cycle is not
completely reversible.

Coefficient of Performance. The amount of heat absorbed
at the lower temperature is H,. The amount of work done by the
external process (input energy) = W and the amount of heat rejected
= H;. Here H;is the desired refrigerating effect.

HoT HOT
T T
" 4H
Co— 3
HyY ; 4,
coLo COLD
(i) HEAT .-
ENGINE (il) REFRIGERATOR
Fig. 6:14
Coeflicient of performance
JHn By
N7 2

Suppose 200 joules of energy is absorbed at the lower temper-
ature and 100 joules of work is done with external help. Then
2004 1003= 300 joules are rejected at the higher temperature.

The coefficient of preformance -
H,
W .
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= H,—H,
= 400200

Therefore the coefficient of performance of a refrigerator = 2.

2

In the case of a heat engine, the efficiency cannot be more
than 100% but in the ¢ase of a refrigerator, the coefficient of per-
formance can be much higher than 100%,. '

/&*A ~5/B{mnple 6-8. Find the eficiency of the Carnot’s engine work-
etw :

" ing een the steam point and the ice point.
T, = 2734100 = 373 K

. T, =27340 = 273K

e
__23 100
- 373 373

100

% efficiency = =373 X 100

Example 6:9. ¥ind the efficiency of a Carnot’s engine working
between 127°C and 27°C. '
T, = 273+127 = 400K
Ty, =273+4+27 = 300K
T,
N =1 Tl
- 1 300
A T 400
% efficiency = 259%,
ple 6:10. A Carnot’s engine whose temperaiure of the

source i8 400 K takes 200 calories. of heat at this temperature and
rejects 150 calories of heat to the synk.  What s the temperature of

== 0-25

the sink 7 Also calculate the efficiency of the engine. ;
H, = 2006 cal ; H, = 150 cal
Tl = 400K ; T, = 1
H, __ H,
Tl o T!
T, = —g: XT1
150
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300
= I-W = 0-25

% efficiency == 25%

-~ Example 6:11. A Carnot’s engine 18 operated belween lwo
reservosrs ai temperatures of 450 K and 350 K. If the engine recesves
1000 calories of heat from the source in each cycle, calculate the
amount of heat rejected 1o the sink in each cycle.  Calculate the
efficiency of the engine and the work done by the engine in each cycle.
(1 calorie = 4-2joules).

T, =450 K ; T, = 350K
H1 = 1000 Cal";’-. H’ s ?
2 _ 71 S
- H, T, -
T
H’ = H1X —T—:-
1000'x 350 o
= — = 77777 cals
T,
_ ;350 _ 100
= 77 450 T 450
= 02222

% efficiency = 22:22%,
Work done in each cycle
= H,—H,
= 1000—-777-77
= 22223 cal
= 222-23 X 4°2 joules
= 933-33 joules
Example 6:12. A Carnot’s engine working as a refrigerator
between 260 K and 300 K receives 500 calories of heat from the
reservoir at the lower temperature. Calculate the amount of heat rejected

to the reservoir al the higher temperature.  Caleulate also the amount

of work done in each cycle to operate the rejrigerator.
: [Delhs (Hons.) 1974)

Hy =1 " Hy = 500 cal
T, =300 K Ty = 260 K
H, T, |
g el

Thermodynamice
Hx =
500 x 300
H = 550 = 576'92 cal
W= HX—H’ = 7692 cal
= 76:92 X 4-2 joules
== 323:08 joules

Example 6:13. 4 Carnot’s refrigerator takes heat from waler at
0°C and discards it to a room at 27°C. 1 kg of water at 0°C s to be
changed into ice at 0°C. How many calories of heat are discarded to
the room ¥ What is the work done by the refrigerator in this process 1
What s the coefficient of performance of the machine 1

[Delhs 1974)

Hy =1
H; = 100080 = 80,000 cal
T, =300K
T, =273K
H T
1ty =T,
H = .1,
|
80,000 x 300
273
H, — 87,900 Cal .
{2) Work done by the rcfrigeratbr
=W = J ({#H—H,)
W = 42 (87,900 —80,000)
. W = 4‘2)( 7900
or W = 3-183 X104 joules
(3) Coeflicient of performance,
D
- H,—H,
- 80,000
87,900—80,000
_ 80,000
7900
= 10-13
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Cota
X-"%mple 6-14. A carnot engine whose low temperature reser-
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voir is at 7°C has an efficiency of 50%,. It is desired to sincrecse the

eficiency to 70%,. By how many degrees should the temperature of

the high temperature reservoir be increased 1 (Delhi 1971)
In the first case

.= 50% = 05, Ty = 27347 =280 K.

T) =1
T,
=1 -1
7 T,
280
or | 050::1-——1,7
or T, = 560 K

Y - 70% = 07,

T, = 280 K,
T =1
’ T!
N = 1'—'17.
280
07=h77
or . Ty = 840K

Increase in temperature == 840—560 < 280 K

| /28 Carnot’s Theorem

The efficiency of a reversible engine does not depend on the
nature of the working substance. It merely depends upon the tem-
perature limits between which the engine works.

i@ AL
(b;tw’-‘\‘; o E‘Al the reversible engines working between the same tempe-
(v&™ rature limits have the same efficiency. No engine can be more effi-

cient than a Camot’} reversible engine working between the same
two temperatures.’ )

Consider two reversible engines A and B, working between the
temperature limits 7'; and 7y (Fig. 6°15). 4 and B are coupled.
Suppose A is more efficient than B. The engine 4 works as a heat
engine and B as a refrigerator. The engine 4 absorbs an amount
of heat H, from the source at a temperature 7T,. It does external
work W and transfers it to B.  The heat rjected to the sink is H, at
a temperature 7. The engine B absorbs heat H,’ from the sink at
temperature 7'y and W amount of work is done on the working subs-
tance. The heat given to the source at temperature 7 is H,'.

Suppose the engine 4 is more efficient than B.
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Efficiency of the engine 4

® O\

T
W]
wi A B)w
Hz’ J >
v = |
SINK
Fig. 6-185.
Efficiency of the engine B
=7 = _Hl —Hy _ W
N\ ~TH T E
Since 1>7v; HY > H,
Also, ' W = H,—H, = H'_H

Hy > H,

Thus, for the two engines 4 and B workin

system, (H,'—H,) is the quantity of heat taken f'romg tgi :ix.iozptlcg
temperature 7', and (H,—H,) is the quantity of heat given to the
source at a temperature T). Both (H,'—H,) and (Hy—H,) are posi-
tive quantities./ It means heat flows from the sink ata tcmpcralzgilc
T, (lower temperature) to the source at a temperature T; (higher
temperature) t.¢., heat flows from a body at a lower . tempex}atureg to
a body at a higher temperature. But, no external work has bee

done on the system. This is contrary to the second law of thermor.l
dynam.lcs. Thus, 1 cannot be greater than %) The two engines
(reversible) working between the same two temperature limits iave

the same efficiency. {Moreover, in the case of a Carnot's engine
- ’

efﬁciency. Whatever may be the nature of t
the efficiency depends only upon the two temperature limits,

. . Ina practical engine there is always loss of energy due to
friction, conduction, radiation etc. and hence its efficiency is always

] ’ : :
ower thar. that of a Carnot’s cngmjj & 1‘ LE
f:’;»-r‘fp*i\ [ 4N

TEna

.‘ = (
—4—;
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For the same compression ratio, the efficiency of an Otto
engine is more than a diesel engine. In practice, the compression
ratio for an Otto engine is from 7 to 9 and for a diesel engine it is
from 15 to 20. Due to the higher compression ratio, an actual diesel
engine has higher efficiency than the Otto {Petrol) engine. The
cylinder must be strong enough to withstand very high pressure.

6:37 Multicylinder Engines

With an engine having one cylinder, the engine works only
during the working stroke. The piston moves during the rest of the
three strokes due to the momentum of the shaft. In a multicylinder
engine (say 4-cylinder engine) the four cylinders are’ coupled. The
working of each cylinder is given below :— '

Firat Second Third __ Pourth
First quarter Working Exhaust Compression | Charging .
Second quarter | Exhaust Charging Working Compression
Third quarter Charging - Compression | Exhaust Working

Fourth quarter | Compression | Working Charging Exhaust

In this way, the power of the engine increases and the shaft
gets momentum during each quarter cycle. -

', 638 Clapeyron Latent Heat Equation

1
!

Consider the isothermals FBAE at. ’tc‘;;}v)ﬂératuré ‘T+dT and
DH at temperature T. Here EA and HD show the liquid state

H E
AT+dTH
1 ‘dr"\
_1 i
P 0T F

-

: ]

! i

Vi V2
V*——--’

Fig. 6:23

of the substance. At 4and D the substance is purely in the liquid
state (Fig. 623). From A4 to B or'D to C the substance is in transi-
tion from the liquid to the gaseous state and vice verse. At B ang
C the substance is purely in the gaseous state. From B to F or C
to G the substance is in the gaseous state. Join 4 to D and B to ¢
by dotted lines.
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The cycle ABCD represents a complete cycle and Carnot's
theorem can be applied. Suppose the volume at the point 4 is ¥,
and temperature is T4+dT. The pressure is just below its saturation
pressure and the liquid begins to evaporate and at the point B the
volume is ¥,. The substance is in the vapour state. Suppose the
mass of the liquid at B is one gram. The amount of heat absorbed
is Hy, Here Hy=L 4+dL, where L+dL is the latent heat of the liquid
at temperature (T'4-d7).

At the point B, the pressure is decreased by dP. The vapour
will expand and its temperature falls. The temperature at C is 7'
Ac this pressure and temperature T, the gas begins to condense and
is converted into the liquid state. At the point D, the substance is in
the liquid siate. From C to D, the amount of heat rejected (given
out) is H;. Here Hy = L where L is the latent heat at temperature
T. By increasing the pressure a little, the original point 4 is restored.
The cycle ABCDA is completely reversible. Applying the principle
of the Carnot's reversible cycle

A _ 4
T, T,
H—H, _T,_T,
: H — T,
Here, Hy = L4dL, Hy = L,

T=T4dl", Ty =T

H,~Hy = L{dL—L = dL

dL ar

7

The area of the figure
ABCD = H,—H, = dL

dP (Vy—F,) dT
— =

T
P L .
AT T TV, veelf)

This is called the Clapeyron’s latent heat equation.

Applications, (1) Effect of change of pressure on the melting
point,

When a solid is converted into a liquid, there is change in
volume. )

(8) If P, is greater than 7,

d
-‘%,)— is a positive quantity. It means that the rate of change of
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pressure with respect 1o temperature is positive. - In such-cases, the
melting point of the substance will increase with increase in pressure
and vice versa.

(11) If V; is less than V).
P, . . ‘
47 'S 3 negative quantity. It means that the rate of change

of pressure with respect to temperature is negative. In such “cases,
the melting point of the substance will decrease with increase in
pressure and vice versa. In the case of melting ice, the volume of
water formed is less than the volume of ice taken. Hence V, < }7,.

Therefore, the melting point of ice decreases with increase in
! tng p

pressure. Hence ice will melt at a temperature lower than zero
degree centigrade at a pressure higher than the normal pressure.

Ice melts at 0°C only at a pressure of 76 cm of Hg.
(2) Effect of change of pressure on the boiling point.

When a liquid is converted into a gaseous state, the volinme 1,
of tlie gas is always greater than the corresponding volume I’y of
the liquid t.e. Ty > V.

Therefore

ar . .
Y TT 15 a 4 ve quantity.

With increase in pressure, the boiling point of a substance ia-
creases and vice versa. The liquid will boil at a lower temperature
under reduced pressure.  In the case of water, the boiling point in-
creases with increase in pressure and vice versa. Water boils at/100°C
only at 76 cm of Hg pressure. In the laboratories, while preparing
steam, the boiling point is less than 100°C because the atmospheric
pressure is less than 76 cm of Hg. In pressure cookers, the liguid
boils at a higher temperature- because the pressure inside 1s more
than the atmospheric pressure.

. Example 6:17. Calculate the depression in the melting point of
tce produced by one atmosphere increase of pressure.  Given laient
heat of ice = &0 cal per gram «and the specific volumes of 1 gram of
sce and water at 0°C are 1091 cm?® and 1-000 cm3 respecitvely,

(Panjab 1563)

Here v L = 80 cal = 80x42x 10" ergs
T=213 K
dP = 1 atmosphere
= 76 % 13:6 % 980 dynes/cm?
Vi = 1:091 cm?®
Vy = 1'00C cm?®
dP L

ar = TET
dP.T(Vy—Vy)
a7 = — "
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76 % 13'65980x273(1—1'091)
80x4-2 x 107 )

) Therefore, the decrease in the melting. point of ice with an
increase in pressure of one atmosphere

= 00074 K = 0-0074°C

.~ Example 6:18. Find the increase in the boiling point of water
at 100°C when the pressure ia_increased by one atmosphere. Latent

heat of vuporisation of steam 18 §40 cal/gram and 1 gram of sleam
_occupies a volume of 1677 cm3.

dP = 76 X 136 x 980 dynes/cm?
T = 1004273
= 373 K
L = 540 x 42 % 107 ergs
Vi = 1000 cm?
Vg = 1677 cm3
dP L
AT T .SV
dPxT(V,—V,)
L

76 x 136> 980 x 373 % 1676
540 x 42 %107
= 27-92°C
Therefore, the increase in the boiling point of water with an
increase in pressure of one atmosphere
= 27-92°C
= 2792 K

Example 6:19. Calculate the change in temperature of boiling
water when the pressure is increased by 27-12 mm of Hg. The normal
boiling point of water at atmospheric pressure i3 100°C.

dT =

Latent heat of steam = 837 callg
and specific volume of steam = 1674 cm? (Delri 197 4)

dP = 2:712x 136 x 980 dynes/cm?

T = 1004273 = 373 K

L = 537x42x107 ergs

Vy = 1:000 cm?

Vs = 1674 cm?®

apP L

v dar =~ T,—Vy
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= 2792 K
= 2792°C

Therefore, the increase in the boiling point of water with an

increase’of 01 atmosphere pressure
= 2792 K
= 2-792°C
~-<«v“i5nmple 6-23. Calculate the chdnge in the melting point of ice
when st 18 subjected to a pressure of 100 atmospheres.
Density of ice = 0-917 g/cm?® and
Latent heat of ice = 336 J/g
(Delhi 1972)

P L
daT ~— T(V,—Vy
dP = 100—1

= 99 atmospheres
dP = 99X 76 X 136 x 980 dynes/cm?

L = 336]/g
= 336 x 107 ergs/g
T =273K
Va~Vy) = 1— 6’9117
. 0083
= T 0917
= —0:09] cm?
iT — T dP(Vy—V,)
L
iT — 273 X99x 76 x 13°6 x 980 x (—0-091)

, 336 %107
dT = ~0-7326 K
_ = -—0-7326°C
The decrease in the melting point of ice with a pressure of 100
atmospheres '
iy = 0-7326°C
Sy
\/’Yxample 624 Calculate the pressure required to lowe
melting point of ice by 1°C.

L = 79-6 cal/g, specific volume of water at 0°C = 1-000 cm:
specific volume of ice at 0°C = 1 091 cm? and 1 almosphere pressure
= 1-013 x 10¢ dynes/em?). (Delhi 197 3)
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T=273K
Vy—T, = —0-091 em3
' L =796 callg
= 79:6x418 X107 ergs/g
L.-d4r
dP = ——~—=
T(Vy—¥y)
. : . . 7 .
AP — 796 x418x107x 1 dynes/cm?

273 % 0091
_ 796 x4-18x 107
T 273x0091 x 1 013X 108
dP = 1352 atmospheres

or dpP atmospheres

Pressure required

= 135:2+1
/~ = 1362 atmospheres
‘/\{xample 6-25. Waler boils at a temperature of 10I°C at a

pressure of 787 mm of Hg. I gram of water occupies 1,601 cm® on
evaporution. Calculate the latent het of steam. J = 4-2x 107 ergs/cal.
{Delhi (Hons.) 197 1}

ar L
T = FTT
dP = 787—760
= 27 mm of Hg
= 2:7 cm of Hg

= 2'7x 136 x 980 dynes/cm?
dT = 1°C = 1K :

= 373K
Ve—V; = 1,601— 1 = 1,600 cm?
L =1
L — T dP (V,—V))
' - a7 .
373x2:7X13:6x980x% 1,600
L = I ergs/g
I — 373x2:7x136%980x 1,600 cal/
= FIx 107 calg

L = 5113 cal/g

Example 626. When lead is melted at atmospheric pressure,
(the melting point is 600 K) the density decreases from 11-01 to 10-65
g/cm?d and the latent heat of fusion is 245 J/g. What is the melting
point nt a pressure of 100 atmospheres 7. {Delhi (Hons.) 1972)
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'H‘ = 11000 joules. Now consider the reversible cycle from state 1 to state 2 along

H. == —800 joules (since heat is rejected) the path 4 and from state 2 to state | along the path C.
T, =3500K ‘ For this reversible cyclic process
T, = 300K o 24 3H {10 §H .
H_ 1000 —800 Sm“ﬁ" jzo g =0 (t4)
T ~ 7500 ° 300 ' From equations (i) and (if)
='7 —% joule/degree j;ﬁ Edg’* = J;Z _S'TEI— ‘ «es(155)
(3) Consider a Carnots reversible engine working between the
temperatures 500 K and 300 K. Suppose 1000 joules of heat energy 2
is drawn from the high tempcrature reservoir.
H, &, ; p
Here T] == 5,—; T
1o _ 8, P ¢
500 ~ 300
or Hy = 600 joules )
H H, H,
\ T=T, "1,
Here H, = - 1000 joules
H, ——600 joules NV
o= 55T - Fig. 6-256
T, = 300K This shows that | 7 has the same value for all the reversible
z 'ITI- = lg::'+ ‘.;;30’ paths from state 2 to state 1. The quantity X—S——? is independent of
H the path and is a function of the end states only, therefore it is a
or 27'— =0 property.
. B This property is called entropy. Entropy is a thermodynamical
This example shows ET = 0, only in the (limiting property and is defined by the relation
3H .
. H . a8 = —p .o{i7)
case and in no case Z—T- is greater than zero. T2 SH
642, Entropy and the Second Law of Thermodynamics or Su—by = 5 1 T 0

The quantity S,—38, represents the change in entropy of the

Consid osed i i
e 3 ol system undergoing a reversible process from system when it is changed from state 1 to state 2.

state 1 to state 2 along the path 4 and from state 2 to state 1 along

|

| the path B (Fig. 6:25). As thisis a reversible cyclic process \ 643 Entropy changes of a Close d System During am
M; f 3H 0 Irreversible Process

| T Consider a reversible cycle where the state is changed from 1

to 2 along the path 4 and 2 to 1 along the path B (Fig. 6:26).
FTlog T = 0 ) For a reversible cyclic process

§sf1 =0




. [24 3H (1B 3
.. 14 T'f‘jza T = O .-.(i’)

V————
Fig. 6-26
Now consider an irreversible path € from state 2 to state 1

Applying Clausius inequality for the cycle of processes 4 and 0

3H
= <o
24 3H (10 3H
Im T +J2a TS0 . (85)

From equations (i) and (i)
1B 3H 10 3H
5213 T ‘"j 20 T 20

Since path B is reversible and entropy is a property

iw 3B _ (B .o (10
2B 7 —“j “sza &S

2B
sH
48 > —p— (i)
2
r 83—8, > L ;4 (i)

To conclude,
For a reversible process

2
S8 = !1 _37?_

ad for an irreversible process
AQA W .'”)! {2 AMH

Fi]
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Equation (iv) shows that the efléct of irreversibility is always
to increase the entropy of a system.

644 Entropy

Consider adiabatics L and M on the P—V indicator diagram
JFig. 6:27). All along the adiabatic L, with change in pressure

Fig. 6-27

there is change in volume and temperature. This shows that all
along the adiabatics L or M, there is change of temperature. Consi-
der the isothermals at temperatures T;, Ty and Ty. ABCD represents
the Carnot’s reversible cycle. From 4 to B, heat energy H, is
absorbed at temperature T;. From Cto D, heat energy H, is
rejected at temperature T,

H, _ 0,
T, T T,
Similarly considering the cycle DCEF
H, _ Hs
T, T,
H, H, H,
o= T, = g, = constant

From one adiabatic to the other adiabatic, heat energy is
either absorbed or rejected.  The quantity of heat absorbed or
rejected is not constant but it depends upon the temperature, Higher
the temperature, more is the heat energy absorbed or rejected and
vice verse. The quantity H;T between two adiabatics 13 constant
and this is called the change in entropy. Let the entropy for the
adiabatics I and M be 8, and 8, respectively.

Here 3, and §; are arbitrary quantities.

Sy Sy = constant.

Hi
i
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i If the adiabatics are
‘ii ! rejected is 8H at a tcmperat‘tlg‘cyTClose' and the heat absorbed or
|

" Change in entropy
8H

N s —
T (1)

In general, the change in entropy

Sy B
= — 3"
J'Sl dS = S,—Sl = IA T .“(2)

j B 3H (5, is
4 7T = j 8 represents the thermodynamic co-ordinate of a

system. Thisi
state minus il:sl‘!,l;?g:altref‘ers to the value of the function at the final
entropy and is reprcs:ntetcili) l%mall\lfsmtc' Tt function is callead
IR .. ; Y 8. oreov i i
tial since it is the differentja] of an actual e;én{:‘gi;i an exact differen-
All along the adiabatic, $ '

tropv alo i ic i

bat?é 2 c:g;;ln?lel’:;iuc 1S Zero or the entropy all along the adi

seversitly porant Wha er;tropq remasns constant during an adi:balta’-
. en heat 13 absorbed during a process there ::

tncrease in entropy

: and wh So pod .

decrease in en tropy. en heat is rejected during a process there is
v

ik /(/ . Change in E :
' .\/,(6/‘5 Gycle? ntropy in a Reversible Process (Carnot's

! Consider a comp] . T
b {Fig. 6-28). plete reversible process [Carnot’
N ). From 4'to B, heat energy H, is [absol:'gejl %};’daf B;vcélr)lf

= 0. Therefore, the change in en-

| Hyr 2

V— o
l . Fig. 6-28

ing subsiance at tem

! - perature 7). Th s s

‘ substance from 4 — 1= 1€ galn 1n entropy of ;

L the source from wli?hB }T H,/T,. (H/T; is the dccri{se ir:hc working
| ture 7). From R tc é ;amqunt of heat H, is drawn at entropy of
| an adiabatic. FrOmoC tf) gehxs Bo change in éntropy bcc?iut:cmggé-
| ; , heat ene is red 18
| :Ig ;"mencc at a temperature T, oo % 1ls rejected by the work-
| rking substance from C to.D — f T S, 0SS In entropy of the
| entropy of the sink to wh;j /Ty (Hy/Ty is also the gain in

' ch the a
temperature 7). From D 1o 4 lhz?:ugtlgfchcat :

113 rcjected ata
hange in entropy. Thug
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the total gain in entropy by the working substance in the cycle

ABCDA
_H, H,
T T T,
But for a complete reversible process
H, H,
CUN

Hence the total change in entropy of the working substance in
~ a complete reversible process

H, H
= thdS = & — L =
ﬁ \ Tl Tl

e
646 Change in Entropy in an Irreversible Process

In an irreversible process like conduction or radiation, heat is
16st by a body at a higher temperature T, and is gained by the body
at a lower temperature T,. Here T is greater than T,.

Let the quantity of heat given out by a body at a temperature
T, be H and the heat gained by the body at a temperature Ty be H.
Consider the hot and the cold bodies as one system.

Loss in entropy of the hot body = -5

Gain in entropy of the cold body = ?.,-
 ¢0 A

Therefore, the total increase in entropy of the system
_H_H
=Ty
It is a positive quantity because 7', is less than T). Thus the
entropy of the system increases in all irreversible processes.

I\ \947 Third Law of Thermodynamics

\/ & In all heat engines, there is always loss of heat in the form o,f
conduction, radiation and friction. Therefore, in actual heat engines

g—:— is not equal to % - )
: g—l—_%— is not zero but it is a positive quantity. When
1 1

cycle after cycle is repeated, the entropy of the system increases and
tends to a maximum valune. When the system has attained the
maximum value, a stage of stagnancy is reached and no work can
be done by the engine at this stage. In this universe the entropy
is increasing and ultimately the universe will also reach a maximum
value of entropy when no work will be possible. With the increase
in entropy, the disorder of the molecules of a substance increases.
The entropy is also a measure of the disorder of the system. With
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decrease in entropy, the disorder decreases. /At absolute zero tem.-
Dperature, the entropy tends to zero and the molecules of a substance or
a system are 1n perfect order (well arrenged). This is the third lay of
thermodynamica.\/

Example. The molecules are more free to move in the
gaseous. state than in the liquid state. The entropy is more in the
gaseous state than in the liquid state. The molecules are more free
to move in the liquid state than in the solid state. The entrop is
more in the liquid state than'in the solid. Thus when a substahZc is
converted from a solid to a hiquid and then from the liquid to the
solxc! state, the entropy increases and vice versa. When ice is conver-
ted into water and then into steam, the entropy and disorder of the
molecules increase. When steam is converted into water and then
into jce, the entropy and disorder of the molecules decrease. Hence
entropy 18 a measure of the disorder of the molecules of the system,

By any ideal procedure, it is impossible to bring an
s t

absplgtc zero temperature performing a finite numb%r on o;zia?ignt:
This g'called I}hclprmcié:l(c} of unattainability of absolute zero. Thus
according to Fowler and Guggenheim, the unattainabili inci
is called the third law of the%modynamics. mabiity. principle 6\
648 Temperature-Entropy Diagram -

The temperature-entropy diagram is used in engineerin
meteorology. Consider the Carnot’s cycle ABC'DAg[Fig. 6'59 ?:;]d
From 4 to B, heat energy H, is absorbed at temperature 7). The
increase in entropy 8, takes place from 4 to B [Fig. 629 (4%)). From

T WE 1 . ST
p 0 % '}
H,%, € $2.%
V=t . Lo
U (6) ENTROPY (S)

Fig. 6-20
B to C, there isno change in entropy. The tempetature decreases
at constant entropy. From C to D, there is decrease in entropy. (S)
at constant temperature 73. From D to “A, there is no change in
entropy but the temperature increases.

The area 4BCD in the temperature-entropy diagram r
the actual amount of energy converted into worr)k [Figg.r 6-29 tz%fents

Thearea  ABCD = 8 (T,—Ty) = 8, (T,—T)

H,

But 8 = %and 8 = T
1 ]
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Here _S,=S,= T;z—?‘—gz—MTl—T,
- T,—T
- Area ABCD = (Hy—Hy) (T1—T) - H,_H,
T,—Ts

Therefore, the area ABCD represents the energy converted to
work

. H,—H H, T,
Efficiency = _,LHI_’.=1_ ET;-:I—T;

Here H, is the unavailable energy. -
Hz = -—,—I,—l- XTg = Slei
The unavailable energy depends on the change in entropy at
temperature 7' and the temperature Ty,

649 Entropy of Perfect Gas

" Consider one gram of a perfect gas at a pressure P, volume Vv
and temperature T'. Let the quantity of heat given to the gas be 3H.

SH = dU4-3W
PV .
8H = 1xCyxdT4 —— ()
SH = TdS
Payv ,
- Td8 = COydT 4+ —— (1))
Also PV = rT
T
or P = =
rT.dV
TdS = OviT+-p
aT r dv
W= +77
. 8y Ty dT  r (V2 dV
Integrating, S'S'l d8 = Cy L,l -+ 7571 v
T’ r V’ .e
8;—8; = Cy log, 7‘:'*'7 log, v, oes(§99)
0% 23026 logro %4 -~ %2-30260gse 02 ...(F0)
S3—8; = CoX S10 T, +F 8107; e
The change in entropy can be calculated in terms of pressure
also. PV — oT
Differentiating
PAV 4+VdP = rdT
or PdV = rdT'—VdP
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Substituting the value of Pd¥ in equation (1)

145 = Cyxdl+ "f,T __VT‘,”l’.
TdS:(O T )dT-— Fap
vt J
But Oyv+ JL = Cp
) dT  vdp
- a8 = Cp 2 78
Lg JT
1 %4 r
o T = F
) dT ¢ dP
: a8 = ¢p ST o7
| Crp -7 P
Integrating
S Ty 4T r [Py dP
a8 = ¢\ * Tl
ES, PSTI T J E-Pl P
T
8,8, = Cp log, -ﬁ_é—log, };’ X .(?)
1

T
8;—8; = Cpx2:3026 % 10810~T-:— - ;— X 2:3026 logm% D)
1

Note, risthe ordinary gas constant and has to b i i
: e tak
work, Op represents the specific heat for 1 gram of a gas at oonst?;lntmp‘;:sletzr‘;f

If Cp represents gram molecular specific heat
constant pressure and E the universal gas sg)m‘»tant, fﬁcnOf < A
g . T, &K P
Sy—8; = Cpx2-3026 logy, T, — " X 23026 logm?:— < (Vi)
. Example 629. Calewlate the change in entropy wh
of ice at 0°C s converted into waler at the same temp{)grczui: 0 grams
(Pungab 1963, Delhi 19785)

Heat absorbed by 10 g of ice at 0°C when it i .
water at 0°C = 10x 80 = 8%0 cal when it is converted into

s 3H = 800 cal
T=0C=273K
The gain in entropy
3H
dS = —~
800
= 55 = 2:93 cal K
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Example 6-30. Calculate the change in entropy when 5 kg of
waler at 100°C is converied into steam at the same temperature.
Heat absorbed by 5 kg of water at 100°C when it is converted
into steam at 100°C
= 5000 % 540

= 2700000 cal
$H = 2700000 cal

The gain in entropy
: SH

2700000 -
= g = 7240 alK

% “.#Example 631. Calculate the increase in entropy when I gram

of ice at —10°C s converted into steam at 100°C. Specific hedt of ice
= 0-5, latent heat of ice = 80 callg, latent heat of steam — 540
<al/g. (Bombay 1974 ; Delhs 1973)

(1) Increase in entropy when the temperature of 1 gram of
jce increases from —10°C to 0°C

Ty 3H
a8 = sn'ﬂ—‘—
T, 4T
. S'—"x T
loge L2
= ma loge —7
. T’
= ms %2-3026 log,.—T—
1
= 1x05%2:3026 logu—g-éi—
= 001865 cal/K

(2) Increase in entropy when 1 gram of ice at 0°C is converted
into water at 0°C. ‘
SH
d8 = ~r

80

(3) Increase in entropy when the temperature of 1 ¢ of water
is raised from 0°C to 100°C. :

a.s-;s

7,
n T
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\ = ms X 2-3026 log,, %
I

1
373
273

I = 1Xx1x2:3026 log,,
= 0312 cal/K

‘ .
| (4) Increase in entropy when 1| t °C is v
’ into s rease Py g water at 100°C is converted

{ .
i 8

}} ‘ 540

~ 373

Total increase in entropy
Mi = 0-01865+02934-0-312+1-447

W - = 2:07065 cal/K
f! . Axample 6:32. One gram molecule of a gas expands isothermal-

K‘ ly to four times its volume. Calculate the change in its entropy in
‘\
|

= 1447 cal/K

terms of the gas constant.

York done = SV’ Pdv
"
But PV — RT
RT
or P~
i V
8 W = RT I Vs 4V
| vV
,;‘ .
| = BT log.;
]“
v,
| He L
| W = RT x 23026 log,, (4)
\ Here, W and R are in the units of work
I
11‘1 Gain in entropy = ‘81?_
1‘“
_ W RTx23026 log,, 4
[ .
‘7 = 1387 Jl calK

" Example 6-33. 50 grams of water ut 0°C is bmixed ;
s
| equal mass of water at 83°C. Calculate the resultant inc:?afe ‘:':

| cnérory- | (Punjab 1963)
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($ymy =50g; T, =273 K
my = 50g; 7T, =353 K
Let the final temperature of the mixture be 7 K
m, sx(T'—T;) = m, s(T's—T)
50x 1 x(T'—273) = 50x1x(353—T)
T = 319 K Lt

(¢) Change in entropy by 50 g of water when its temperature:
rises from 273 K to 313 K. ‘

3H
=T
e (7T
- :!Tl T
’ 313
= 50x 1 xlog, 273
313

= 50 X 2'3026 X Iogm —2-7—3‘
= 46829 cal/K

Here, the 4-ve sign indicates gain in entropy.

(##8) Change in entropy by 50 g of water when its temperature
falls from 353 K to 313 K

_sH _ [T 4T
I sq',_T—

1
=50x1xX log,g—sg-

313
= 50x2-3026 x log;e 353
= —6023 cal/K
Here, the —ve sign indicates loss in entropy.
Therefore, the total gain in entropy of the system
= 6'829—6-023
== 0-806 cal/K

N Example 6-34. Calculate the change in entropy when 50 grams
of water at 15°C 18 mized with 80 grams of water at 40°C. Specific
heat of water may be assumed to be equal to I. (Rajasthan 1961)

) m; = 50g
T, =15+4273 = 288 K
my = 10 grams
Ty = 40+273 =313 K
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Let the final temperature be T K.
My XX (T T,) = myxsx(Ty—T)
50x 1 x(I'—288) = 80x 1% (313—~T)
T — 3034 K

(+5) Change in entropy when the temperature of 50 g of water
rises from 288 K to 303-4 K :

M _ (7 4T
T — ITIT
303-4

= 50X 1x2:3026 X logiy Jper

= +42:602 cal/K.

(#3) Change in entropy when the temperature of 80 g of water
decreases from 313 X to0 3034 K

T ST,T
303-4
31

= 80X 1x23026 ¢ log;,

= —2:487 cal/K
Therefore, the net change in the entropy of the system
= 42602—2-45/,
= +01'% ral/K
Hence the net increase in the entropy of the system
= 0-115 cal/K

J Example 6:35. 10 g of steam at 100°C is blown into 90 grams
-of water at 0°C, contained in a calorimeter of water equivalent 10
rams. The whole of the steam s condensed, Calctlate the increase
sn the entropy of the syastem, [Delhi (Hons.) 1973;
O] m=10g
T, = 100°C = 373K
my = 90410 = 100 g
T, =273 K
Let the final temperatuie be T K
10 X 5404-10(373—7T) = 106{T—273)
T =23312K

(#%) Change in entropy when the temperature of water and
calorimeter rises from 273 K to 331-2 K

N

T dT
T, T
3312 g7

273 T

SH
=-—1-,—=1n8

= 1005
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- 100x2'3026xlog,0( 33"2)

273
= +19:32 cal/K ‘
(¢59) Change in entropy<when 10 grams of steam at 373 K i
condensed to water at 373 K
3H 10 x 540
= '_T”) =T 7273
= —14:47 cal/K
(—ve sign indicates decrease in entropy).
(iv) Change in entropy when 10 grams of water at 373 K is
cooled to water at 331°2 K
3H T dT
T =™ jq‘, T

= 10x2:3026 logio (—)
= —1-188 cals/K

Net change in entropy .
= 19-32-14:47—1-188
= 43662 cal/K

Hence the net increase in. the entropy of the system
= 3-662 cal/K

o Example 636. 1 g of water at 20°C is converted snto ice at
—10°C at constant pressure, Heat capacity for 1 g of water is 4-2
J/g-E and that of ice is 2:1]/g-K. Heat of fusion of ice at
0°C = 335]]g. Calculate the total change in the entropy of the
system.

(¢) Change in entropy when the temperature of 1 g of water at
293 K falls to 273 K.

SH Ty 4T

dS = - = ms §T1 7
9 273 4T
= x4 5293 -—T—

973
— 42%2:3026 logs (-2—93—)
= 02069 J/K

(i?) Change in entropy when | g of waier at 273 K is convert.
ed into ice at 273 K

—1%335
45=_8£1.= X

= T = —1227 JK
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($5) Change in entropy when the temperature of 1 g of ice at
278 K falls to 263 K

éH Ty dT
a8 = -T— = 8 !T; —T—
= 1X2'1 X2:3026 logu| pa )
— —0-07834 J /K

Total change in entropy of the system
= —0-2969—1-227—0-07834
= —1-60224 J/K
Negative sign shows that there is decrease in entropy of the system.

“ Example 637, 1 kg of water at 273 K is brought in contact
with a heat reservoir at 373 K (1) what is the change in entropy of
water when its temperature reaches 373 K 2

(2) What is the change in entropy of (i) the reservoir and (i)
the universe.

(1) Increase in entropy when the temperature of 1000 g of
‘water is raised from 273 K to 373 K

[Tl SH

as = |

= ms X 2:3026 logm g’
1

373
(2) (5) Change in entropy of the reservoir,
—38H
ds = 7
1000 1.x 100 1
= - Wl —268'1 cal/K

Negative sign shows decrease in entropy
{2) (#%) Change in entropy of the universe
= 3122681
= 43-9 cal/K
Therefore, the net increase in entropy of the universe
= 43-§ cal) K
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650 Zero Point Energy

According to Kinetic theory, the energy of a system at absolute
zero should be zero. It means the molecules of the system do not
possess any motion. But according to the modern concept, even at
absolute zero, the molecules are not completely deprived of their
motion and hence possess energy.. The energy of the molecules at
absolute zero .emperature is called zero point energy.

651 Negative Temperatures

The specific heat of a substance decreases with increase in
temperature. However, the specific heat does not tend to.zero as the
temperature tends to infinity. This shows that the temperdture has
a + ve sign only. '

But recent experiments by Ramsey (1956) have shown that a-
part of a system 4.e., the nucleus of a solid, can have a negative tem-
perature. This sub-system is considered isolated from the main sys-
tem (i.e., solid lattice). The specific heat of the sub-system tends to
zero at high temperature. A small amount of heat energy tends to
raise the temperature of the system to infinity. It is possible to add
still more energy to the sub-system at infinity and it forces the sub-
systém into the negative temperature region. It has been shown by
microscopic statistical analysis that there is no distinction between
the temperature of 400 and —oco, In thermodynamics, the para-
meter 1/7 is more significant than 7.

The negative temperatures are hotter than the positive tempe.
ratures and minus zero {—0) is the  hottest temperature and  plus
zero (4 0) is the coldest temperature.

The negative temperature is not possible with the system - as a
whole and is only an exception to the rule that only positive tempe-
ratures exist. The negative temperatures are possible only for isola.
ble sub-systems. For all normal purposes the temperatures are always
positive.

52 Maxwell's Thermodynamical Relations )

From the two laws of thermodynamics, Maxwell was able to
derive six fundamental thermodynamical relations. The state of a
system can be specified by any pair of quantities viz. pressure (P),
volume (V), temperature (T) and entropy (S). In solving any ther-
modynamical problem, the most suitable pair is chosen and the
quantities constituting the pair are taken as independent variables,

From the first law of thermodynamics

3H = dU 4+ 3W
8H = aU -+ Pav
or 8U = SH--P4v
From the second law of thermodynamics,
SH
a8 = 7
or ?)y o 7(,;5'
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Substituting this value of 3H in the first equation
dU = TdS—Pd¥ (3}

Considering S, U and ¥ 10 be functions of two independent
variables z and ¥ [here  and ¥ can be any two variables out of P, ¥,

T and 8),
e (), e (5). 4
v = (52, (57 ).
7 = (%), =+(5).

Substitutinig these values in equation (i)
(52), =+ (%) = [(3), 2+ (), o]

2 [(5), =+(5 ). ]
(), =)o - [ (), (&)=

[ (5). - () d

Comparing the coefficients of dz and dy, we get

Ea.z_)' =T (%?), _P (-g{f-)v i)
(B) ()

Differentiating equation (if) with respect to ¥ and equétion
(3i5) with respect to = '
A R
oy-o% oy J:\oz a+ 9y o=
U3
oy J=\3% Jy oyoz
?U (8T (ﬁ) p S
and %oy - (ax ), 50 Je T 970y
(5)5). ~ s
T\ oz o\ 0¥ /= LETE

The change in internal energy brought about by, changing ¥
and T whether ¥ is changed by d¥ first and T by dT later or vice

versa is the same.
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and

and
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It means dU is a perfect differential
U WU
- azay — 7oy o0
( aT) (aS ) 218 oP oV -
97 ) (95 p 00 _[of V(oY N\ p @
\ oY J:\8ZT Jy + oyozx ( oy )Z(ax )y P oyox
aT ) (aS ) o038
={Z = 1.7 2
(31 y\ oY z+ ozey
_(2{’\ (a_lf_) —_p ¥
0T Jy\ 2y /s GELT
Simplifying,
(& &) (5.5
0y =\ 97 /y oy /= 5;).
v =EEAENE).
0% /y\0Y /= 5)1(5@)1 -+ (0)

Here z and y can be any two variables out of P, V, T and &.

Derivation of Relations

(1) Taking T and V as independent variables and
z2=T
y="V
o
oz~ Loy =
9T .
=0, & =
oy oz 0
Substituting these values in equation (iv)

(g;f?)’f = (:_'1'11 )V | ese(0)

_oH
T

S 9t - o)

(2) Taking T and P as independent variables and
ze=T
y=>F

o _, oP
T oy
T 0 P -

oy ' oz

But

=1,




room temperature of 27°C.
the resulting temperature ?

denly to } of its original volume:

suddenly compressed to  of its original volume.
pressure and (is) the final temperature.
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78. Derive the following relations :

AV \2f aP
8 il
(@) CpCy = —T (__{T, )P( o \T
14
4 TdS = waT——T(-éT )PdP

(cP/aT)s Y

© GPRTNY — Y=1°

W Write short notes on :

r49) Isothermal Process
a_A71) Adiabatic Process
(¢43) Isochoric Process
\4#v) Carnot’s engine
Carnot’s theorem
{vi) Second Law of thermodynamics
(vii) Clement and Desormes’ method
(vi#i) Ruchhardt’s experiment for ¥
iz) Absolute gas scale
() Rankine cycle
{(z7) Diesel engine
(xit) Steam engine
(ziti) Otto cycle .
r_Aziv) Entropy is a measure of .dtsordcr
(zv) Entropy tends to a maximum
«—txoi) Third Law of thermodynamics
(zvii) Absolute zero temperature
\_Atviii) Entropy of a perfect gas.
(ziz) Temperature-Entropy diagram
(zz) Thermodynamic system
_A(z=x%) Thermal Equilibrium
{zziij Concept of Temperature
(xziit) Concept of Heat
L Azziv) Zeroth Law in Thermodynamics.
(zzv) Phase changes of the second order.

' tyre has a pressure of 3 atmospheres at the
 mpeae o 97CL 1f lt:hc: tyre suddenly bursts what is
[Ans. 2186 K =-—544°C]

. i fair(y = 14) at 27°C is compressed sud-
P A L Find the final temperature.
[Ans. 522:3 K = 249-3°C]

k i i 7°C and atmospheric pressure is
82. A quantity of air at 2 I})?ind e e

[Delhi (Hons.), 1978]

[Delhi, 1975)

[Delhi (Hons.) 1977}

[Delhi (Hons.) 75)

[Ans.  (3) 8:29 atmospheres (3t) 571'1 K = 298'1°C]
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83. Find the efficiency of the Carnot's engine . working
between 150°C and 50°C. [Ans. 23-64%]

84. Find the efficiency of a Carnot’s engine working between
227°C and 27°C. [Ans.  40%]

85. A Carnot’s engine whose temperature of the source js 400

K takes 500 calories of heat at this temperature and rejects 400 calo-

ries of heat to the sink. What is the temperature of the sink ?
Calculate the efficiency of the engine.

[Ans. (1) 320 K, (i1) 20%

86. A Carnot’s engine is operated between two reservoirs at
temperatures of 500 K and 400 K. If the engine receives 2000
calories of heat from the source in each cycle, calculate (@) the

£ amount of heat rejected to_the sink in each cycle, (b) the efliciency
. of the engine and (c) the work done by the engine in each cycle in

(%) joules (i2) kilo-Watt hours.
[Ans. (a) 1600 calories, (b) 20%, (c) (3) 1780 joules,
(%) 4944 x 10 € kWh]
87. A Carnot’s engine working as a refrigerator between
250 K and 300 K receives 1000 calories of heat from the reservoir
at the lower temperature. (v) Calculate the amount of heat re-

& jected to the reservoir at the higher temperature. (i) Calculate

also. the amount of work done in each cycle to operate the
refrigerator.

SN [Ans. (i) 1200 cal, (41) 840 joules]
g‘g Calculate the depression in the melting point of ice

‘ 1 produced by 2 atmospheres increase of pressure. Given latent heat
§ of ice = 80 cal/g and the specific volumes of 1 gram of ice and
§ water at 0°C are 1-091 cm?® and 1-000 cm? respectively.

. . [Ans.” 0:0148 K or 0-0148°C]
(89 Find the increase in the boiling point of water at '100°C

when the pressure is increased by 2 atmospheres. Latent heat of
i vapsorlsatnon of steam is 540 cal/g and 1 g of steam occupies 1677
§ cm’ volume, [Ans. 5584 K or 55-84°C)

91. Calculate the temperature at which ice will freeze if the

1 Ppressure is increased by 135'2 atmospheres. The change in specific
1 volume when 1 gram of water freezes into ice is 0°091 cm®" One

atmospheric pressure = 108 dynes/cm?®. Latent heat of fusion of ice
= 80 cal/g. and J = 4-2x 107 ergs/cal, [Ans. —1.0°C]

—@’palculate the temperature at which water will boil if the
ressure 1s increased by 1:814 atmospheres. Given that the change
n specific volume when one gram of water is converted into steam
s 1676 cm®. Latent heat of vaporization of steam — 540 cal/g.
= 42X 107 ergs/cal and one atmosphere pressure = 10¢ dynesjcm?,
[Ans, 150°C]




